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We generalize the Flory-Stockmayer theory of percolation to a model of associating �patchy� colloids, which
consists of hard spherical particles, having on their surfaces f short-ranged-attractive sites of m different types.
These sites can form bonds between particles and thus promote self-assembly. It is shown that the percolation
threshold is given in terms of the eigenvalues of a m�m matrix, which describes the recursive relations for the
number of bonded particles on the ith level of a cluster with no loops; percolation occurs when the largest of
these eigenvalues equals unity. Expressions for the probability that a particle is not bonded to the giant cluster,
for the average cluster size and the average size of a cluster to which a randomly chosen particle belongs, are
also derived. Explicit results for these quantities are computed for the case f =3 and m=2. We show how these
structural properties are related to the thermodynamics of the associating system by regarding bond formation
as a �equilibrium� chemical reaction. This solution of the percolation problem, combined with Wertheim’s
thermodynamic first-order perturbation theory, allows the investigation of the interplay between phase behavior
and cluster formation for general models of patchy colloids.
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A system of bonding particles may form a gel if the prob-
ability of finding an infinite spanning cluster is nonzero. In-
deed, a percolating aggregate is a gel if the bonds are long
lived, as in chemical �irreversible� gelation, but need not be
if the bonds are not necessarily long lived, as in physical
�reversible� gelation. Percolation theory was applied to
chemical gelation by Flory and Stockmayer �FS� �1–5�. The
FS theory is a random-bond percolation model, and thus the
fluid structure is determined by f , the particle valence �i.e.,
the maximum number of bonds that a particle can form�, and
p, the probability of bond formation. Despite its simplicity,
FS theory adequately describes the gelation transition, as
well as the cluster size distributions, both in the percolated or
gel and in the nonpercolated or sol phases.

Recently there has been much interest in models of patchy
colloids: micron-sized particles formed by controlled assem-
bly of nanoconstituents, the surfaces of which are patterned
so that they attract each other via discrete “sticky spots” of
tunable number, size, and strength �6�. This opens up the
possibility of tailoring their behavior, in particular to design
and control physical gels �7�. The interplay between phase
separation and percolation has been elucidated �7,8� for mod-
els with f identical bonding sites. Bond formation �overlap of
two sites� lowers the energy, and as a result the particles
self-assemble to form clusters whose sizes follow an equilib-
rium distribution. Computer simulations have revealed that
when the valence f →2+, the critical point is much depressed
�8�. Consequently, equilibrium gels may form at very low
densities and temperatures since bond lifetimes are then
longer. The thermodynamic properties were found to be in
good agreement with Wertheim’s theory �9,10�, which also
provides an approximation for the bonding probability p. A
combination of Wertheim’s and FS theories yields an accu-
rate description of the cluster distribution and percolation
threshold of the simulated model patchy colloids �7�.

An immediate generalization of the model �see Fig. 1�
considers distinct patches or bonding sites �11,12�. Its ther-

modynamics is still described by Wertheim’s theory. The FS
random-bond percolation model, however, is no longer ap-
plicable as there are now �several� distinct bonding prob-
abilities. In this Rapid Communication we derive a generali-
zation of FS theory to models with several bonding
probabilities applicable to �and inspired by� patchy colloids
with distinct interaction sites �see Fig. 1�.

We consider a system of N identical hard spheres �HSs�,
each with f bonding sites on its surface. These are of m
different types and there are f� sites of type ����=1

m f�= f�.
Equal bonding sites corresponds to m=1 and the thermody-
namics of the model with f =3 and m=2 was investigated in
�11,12�. Bond formation between a site � and a site � lowers
the energy by ���. At low enough temperatures, clusters with
a number of particles connected by distinct bonds are
formed. At percolation, an infinite spanning cluster appears.
Here �as in �1,2�� we will assume that the clusters are treelike
�i.e., there are no loops�, and in order to characterize the
cluster size distribution, we define the probabilities:

�i� p� as the probability of finding a bonded site �; this
equals n� / �f�N�, where n� is the average number of bonded
sites �;

�ii� p�→� as the probability of bonding a given site � to a

FIG. 1. Left: schematic representation of the particles—hard
spheres �large disks� with bonding sites on their surfaces
�small disks�; there are f bonding sites of m types �f� of type ��;
here f =5, m=3, f1=3, and f2= f3=1. Right: when two bonding sites
�� and �� overlap, a bond �� forms, decreasing the energy by ���;
here a bond 13 has formed.
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site �; this equals p�→�= �1+����n�� / �f�N�, where ��� is
the Kronecker delta and n�� is the total number of bonds
between sites � and �; note that p�=��=1

m p�→� and
f�p�→�= f�p�→�.

�iii� Q� as the probability that a particle is not bonded to
the giant cluster through one of its sites �; Ps=��=1

m Q�
f� is

then the probability that a particle belongs to a finite cluster.
The �Q�� are obtained from the �p�� and �p�→�� by noting

that given a random particle, one of its � sites is not bonded
to the giant cluster if the site �1� is not bonded �with prob-
ability 1− p�� or �2� is bonded to a site of another particle,
but none of the other sites of that particle are bonded to the
giant cluster. Then, under the no loop condition,

Q� = 1 − p� + �
�=1

m

p�→� � �
�=1

m
Q�

f�

Q�

, �1�

Q�=1, ∀� is always a trivial solution of Eq. �1�. When this
is the only solution the system is below the percolation
threshold, which is reached when a nontrivial solution ap-
pears for some �p�� and �p�→��. Here, however, we will
calculate the percolation threshold following Flory’s deriva-
tion for a system with f identical bonding sites. Briefly, the
treelike clusters are described by a succession of levels; a
particle on a given level is bonded to �f −1�p particles on the
level below; the number of particles on each level increases
as a geometric progression of ratio �f −1�p. An infinite clus-
ter exists when �f −1�p�1 and the percolation threshold oc-
curs for pc=1 / �f −1�. We start by describing the treelike
clusters of the general model by levels, as depicted in Fig. 2:
to reach a site � on level i+1 one can start from an arbitrary
site � on level i and then follow a path through another site
� of the same particle; the number of paths �once � is cho-
sen� is of course f� if ��� and f�−1 if �=�; each path �
→� appears with probability p�→�Ps / �Q�Q��, the probabil-
ity of bonding � to �, given that � is not bonded to the
infinite cluster. Therefore the number of bonded sites � on a
given level is related to the number of bonded sites of all
types on the previous level by

ni+1,� = �
�=1

m

�
�=1

m

p�→�

Ps

Q�Q�

�f� − ����ni,�. �2�

These recursion relations are linear so they can be written in
matrix form

ñi = T̃iñ0, �3�

where ñi is a column matrix with m rows whose entries are

ni,� and T̃ is a m�m matrix with entries t��

=��=1
m p�→�Ps / �Q�Q���f�−����. If the matrix T̃ is diagonal-

izable, then ni,�=��=1
m c��	�

i , where 	� are the eigenvalues of

T̃. On the other hand, if the matrix is not diagonalizable, it
can nevertheless be transformed into a Jordan form: the ni,�
are then finite sums of terms c��ik	�

i , k being an integer
smaller than the �algebraic� multiplicity of eigenvalue 	�. In
either case, c�� are constants that depend on ñ0 and on the

eigenvectors of T̃. Therefore, the m progressions represented
by Eq. �3� will all converge to 0 if and only if 		�	

1, ∀ �. Percolation occurs when there exists an � for
which 		�	=1. Thus the problem of finding the percolation
threshold is transformed into the problem of calculating the

eigenvalues of T̃. Notice that this calculation can be simpli-
fied if one considers the approach to the percolation thresh-
old from a nonpercolated state �i.e., Q�=1, ∀ ��.

The finite clusters formed in this system are fully charac-
terized by their size distribution, usually defined as r�n�, the
number of clusters of size n divided by the total number of
particles in the system. Below percolation, �nr�n�=1; above
percolation �nr�n� equals the probability that a given par-
ticle does not belong to the giant cluster since this distribu-
tion does not contain the giant cluster. In order to proceed we
define: �i� Nn
�nnr�n� /�nr�n� is the mean cluster size and
�ii� Nw
�nn2r�n� /�nnr�n� is the mean size of a cluster to
which a randomly chosen particle belongs. It is known that
only Nw �and not Nn� diverges at percolation �or, in other
words, only the second and higher moments of r�n� diverge
at percolation�.

The calculation of Nn is straightforward because, under
the no-loop condition, the number of clusters is decreased by
one whenever a bond is formed. Consequently, the number
of clusters is N�nnr�n�� �1−nb�, where nb

= 1
2��=1

m f���=1
m p�→�Ps / �Q�Q�� is the mean number of

bonded sites per particle that belongs to a finite cluster.
Therefore,

Nn =
2

2 − �
�=1

m

f�

p� + Q� − 1

Q�

. �4�

Notice that this holds for both percolated and nonpercolated
systems �in the latter case Q�=1, ∀ ��.

The derivation of Nw follows simply with the aid of Fig.
2: from a randomly chosen particle a tree graph is built and
the number of particles at each level is summed. The number
of particles on level i equals ��=1

m ni,�, whence

Nw = 1 + �
i=0

�

�
�=1

m

ni,�, �5�

with ni,� given by Eq. �3� and n0,�=��=1
m f�p�→�Ps / �Q�Q��.

Once the eigenvalues and the eigenvectors of T̃ have been
calculated, the sum in Eq. �5� can be performed. In the most

FIG. 2. Schematic representation of the treelike clusters. After
choosing a random particle �at the top of the figure�, the cluster can
be represented by levels as shown; on each level there are n�

bonded sites of type �. The arrows represent the bonds that, in this
description, allow one to go from one level to the next; each bond
�arrow� connecting a site � to a site � occurs with probability p�→�.
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general case where all eigenvalues are different, Eq. �5�
becomes

Nw = 1 + �
�=1

m
a�

1 − 	�

, �6�

where �a�� are constants given in terms of �n0,�� and of the

eigenvectors of T̃.
The above expressions are consistent with previously

known results when all bonding sites are identical �m=1�. In
what follows, we derive the percolation threshold, Nn and
Nw, for the simplest nontrivial model with dissimilar bonding
sites: three sites �f =3� of two types �m=2�; two of the sites
will be called A�fA=2� and the other B�fB=1� �11,12�. Prob-
abilities QA and QB are obtained as implicit functions of p�

and p�→��� ,�=A ,B� using Eq. �1�. The trace of T̃ is
T= pA→AQB+2pB→BQA and its determinant is D

=2QA
2�pB→ApA→B− pA→ApB→B�. The eigenvalues of T̃ are

then 	�= 1
2 �T��T2−4D�, and it can be shown that they are

real and 	+
 		−	, for all sets of probabilities �p�� and
�p�→��. The percolation threshold is thus given by 	+=1.
The explicit expressions for Nw depend on the multiplicity of
	�:

�i� Identical eigenvalues �	+=	−�. This happens if and
only if pA→A=0; since pA→A=0 implies pA


1
2 and

QA=QB=1 �from Eq. �1��, one has 	+=1−2pA. Therefore, no
percolation occurs. Nw is obtained from Eq. �5� with the
result

Nw =
1 − 2pA + pB − 2pA

2

�1 − 2pA�2 . �7�

�ii� Different eigenvalues �	+�	−�. This is the generic case.
Nw is obtained from Eq. �6�:

Nw = 1 +

2
QA − 1 + pA

QA
+

QB − 1 + pB

QB
−

3

2
D

1 − T + D
. �8�

Finally, Nn is obtained directly from Eq. �4�:
Nn=2 / �2−2��QA−1+ pA� /QA�− ��QB−1+ pB� /QB��.

In summary, once �p�� and �p�→�� are known, �Q�� are
calculated using Eq. �1�, and all other quantities of interest

can be computed. In general, the eigenvalues of T̃ �and thus
Nw� will have to be found numerically.

Up to this point, percolation has been considered a geo-
metric or connectivity problem. However, the N particles of
the model are an interacting thermodynamic system: they are
contained in a volume V at a temperature T. Bond formation
between a site � and a site � lowers the energy by ���, and
the HSs provide an excluded-volume repulsion. The relation
between percolation and the thermodynamic properties of
this system may be established as follows. Formation of a
bond between an � and a � bonding sites and the breaking of
this bond can be seen as a chemical reaction: �+�↔��.
Chemical equilibrium between these species �nonbonded
sites and bonds� can thus be expressed by

n��

�f�N − n���f�N − n��
=

���

V
, �9�

where ��� is the equilibrium constant for the reaction. Com-
bining chemical equilibrium and the relations between p� ,n�

and p�→� ,n�� yields

p�→� = ����f��1 − p���1 − p�� , �10�

where �
vsN /V is the packing fraction, vs is the HS vol-
ume, and ���= �1+������� /vs. Using the �normalization� re-
lation between p� and p�→�, p�=��=1

m p�→�, the following m
equations result:

p� = ��1 − p���
�=1

m

���f��1 − p�� . �11�

Equations �10� and �11� express the bonding probabilities as
functions of � and ���, and so to complete the relation be-
tween percolation and thermodynamics, an approximation
for the equilibrium constant is needed. Wertheim’s first-order
perturbation theory �9,10� relates these probabilities to the
density and temperature through m laws of mass action �with
exactly the same dependence on f� and p� as Eq. �11�� and
thus provides an approximation for the equilibrium constant
that we shall adopt. This approximation depends on the in-
teraction potential between the bonding sites, V���r��, and on
the pair correlation function of the reference HS system
gref�r��: vs���=�gref�r���exp�−V���r�� / �kBT��−1�dr� �kB is
Boltzmann’s constant�. If the interaction between bonding
sites � and � is taken to be a square well of depth ��� and
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FIG. 3. �Color online� Two realizations of the model 2A+1B:
solid and dashed �black� lines are for �BB=0,�AB=0.75�AA; dashed-
dotted and dotted �red� lines are for �AB=0,�BB=0.75�AA. �a� Phase

diagrams and percolation lines; �b� eigenvalues of T̃ �	+: solid and
dot-dashed lines; 	−: dashed and dotted lines�; �c� QA

2QB, fraction of
particles in the sol phase; �d� Nw �solid and dot-dashed lines� and Nn

�dashed and dotted lines�. In �b�–�d� all quantities are calculated as
functions of temperature at the critical density.
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volume vb,�� �the bond volume�, and the ideal gas approxi-
mation is used for gref,

��� =
vb,��

vs
�exp����/�kBT�� − 1� . �12�

Therefore, for a model with any f and m, at a given � and T,
one proceeds as follows: first, Eq. �12� is used to compute
���; then Eqs. �1�, �10�, and �11� yield p�, p�→�, and Q�.
The percolation threshold Nw and Nn can then be found as a
function of � and T.

As an example we consider again the model with
f =3,m=2 and vb,��=6,357�10−4vs �7�, and study numeri-
cally two cases: �i� �AB=0 and �BB=0.75�AA; and �ii�
�BB=0 and �AB=0.75�AA. The liquid-vapor binodals are cal-
culated as described in �11�. The phase diagram �Fig. 3�a��
contains a percolation line where 	+=1: below this line there
is nonzero probability of finding an infinite cluster in the
system. Figure 3�a� shows that the liquid phase is in fact a
network �since it is found below the percolation line� and
therefore may form a gel. In Figs. 3�b�–3�d� we plot several
relevant quantities as functions of temperature at the critical
density for either system. Figure 3�b� shows the eigenvalues
	�: we note that 	+�1 and 	−
	+; 	+=1 defines a perco-
lation temperature for the chosen density. In Fig. 3�c�, QA

2QB,
i.e., the probability that a given particle does not belong to
the gel phase, is plotted: above the percolation temperature
QA

2QB=1. Finally, in Fig. 3�d� we plot results for Nn and Nw:
as expected, Nw diverges at the percolation temperature.

We have derived the percolation threshold and the first
moments of the cluster distribution function for a generalized
patchy model under the no-loop assumption. We showed
how Wertheim’s theory may be used to calculate the bonding
probabilities for models with any number and type of inter-
acting sites, paving the way for a general investigation of the
interplay between cluster formation and criticality. As dis-
cussed elsewhere, the model provides a much deeper under-
standing of the onset of criticality in systems of low-valence
particles �12�, enabling us to go from independent chains to
hyperbranched polymers and thence to simple dimers. It pro-
vides the key to controlling the bond lifetimes of various
types of equilibrium networks by depressing their critical
point so as to pre-empt phase separation, thereby allowing
the realization of ideal gels in single-component one-phase
systems.

The results reported in this Rapid Communication can be
generalized to mixtures of particles of general f , m, and f�.
This, combined with Wertheim’s theory �8,10�, allows a
complete description of the thermodynamics and percolation
of mixtures of any type of patchy particles. A much more
challenging task, however, concerns the calculation of the
cluster size distribution or the construction of a generating
function for its moments. This remains an open problem
even for the single-component model with distinct interac-
tion sites �13�.
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